4.0 Article

Galactosylated poly(vinylidene difluoride) hollow fiber bioreactor for hepatocyte culture

期刊

TISSUE ENGINEERING
卷 11, 期 11-12, 页码 1667-1677

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.2005.11.1667

关键词

-

向作者/读者索取更多资源

To overcome the limitations of long-term expression of highly differentiated hepatocyte functions, we have developed a novel bioreactor in which hepatocytes are seeded in a ligand-immobilized hollow fiber cartridge. Galactosylated Pluronic polymer is immobilized on poly(vinylidene difluoride) (PVDF) hollow fiber surface through an adsorption scheme yielding a substrate with hepatocyte-specific ligand and a hydrophilic surface layer, which can resist nonspecific protein adsorption and facilitate cell binding to the galactose ligand. Interestingly, the galactosylated PVDF hollow fiber shows enhanced serum albumin diffusion across the membrane. Freshly isolated rat hepatocytes were seeded and cultured in the extralumenal space of the hollow fiber cartridge for 18 days in a continuously circulated system. Albumin secretion function of the seeded hepatocytes was monitored by analyzing circulating medium by enzyme-linked immunosorbent assay. Urea synthesis and P-450 function (7-ethoxycoumarin dealkylase activity) were measured periodically by doping the circulating medium with NH4Cl and 7-ethoxycoumarin, respectively. Hepatocytes cultured on galactosylated PVDF hollow fibers maintained better albumin secretion and P-450 functions than on unmodified and serum-coated PVDF hollow fibers when cultured in serum-containing medium. Morphological examination by scanning electron microscopy showed that hepatocytes cultured on galactosylated PVDF hollow fibers developed significant aggregation, in contrast to those cultured on unmodified PVDF fibers or on serum-coated PVDF fibers. Transmission electron microscopy images revealed that tight junctions and canaliculus-like structures formed in these aggregates. These results suggest the potential application of this galactosylated PVDF hollow fiber cartridge for the design of a bioartificial liver assist device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据