4.6 Article

Manipulation of the anabolic and catabolic responses with OP-1 and zoledronic acid in a rat critical defect model

期刊

JOURNAL OF BONE AND MINERAL RESEARCH
卷 20, 期 11, 页码 2044-2052

出版社

WILEY
DOI: 10.1359/JBMR.050712

关键词

BMP; bisphosphonates; nonunion; histomorphometry; BMD

向作者/读者索取更多资源

Introduction: When used to augment bone healing, osteogenic protein 1 (OP-1/BMP-7) and other BMPs stimulate the anabolic response, inducing osteoblast recruitment, differentiation, and bone production. However, BMPs can also upregulate catabolism by direct stimulation of osteoclasts and indirectly by osteoblasts through RANKL/RANK. We hypothesized that if such osteoclastic upregulation were modulated by zoledronic acid (ZA), the combination of OP-1 and ZA should produce increased new bone over OP-1 alone. Materials and Methods: Rats with a surgically induced 6-mm femoral critical size defect were separated into five dosing groups: Carrier, Carrier + ZA, OP-1, OP-1 + ZA, and OP-1 + ZA administered 2 weeks after surgery (2W). Carrier 50 mu g OP-1 was placed in the defect, and 0.1 mg/kg ZA or saline was administered subcutaneously. Bone repair was analyzed by radiographs, QCT, mechanical testing, histology, and histomorphometry. Results: Carrier alone and Carrier ZA groups did not unite by 8 weeks. Radiological union occurred in all OP-1 groups but was tenuous in some animals treated with OP-1 alone. BMC was increased by 45% in the OP-1 ZA group and 96% in the OP-1 ZA 2W group over OP-1 alone (p < 0.01.). Callus volume increased over OP-1 alone by 45% and 86% in the OP-1 ZA and OP-1 ZA 2W groups, respectively (p < 0.01). The increased callus volume in the OP-1 ZA 2W group translated to increases in strength of 107% and stiffness of 148% (p < 0.05). BFR was not significantly different between OP-1 groups regardless of ZA treatment. Conclusions: ZA treatment significantly increased the BMC, volume, and strength of OP-1-mediated callus in a critical size defect in rats at 8 weeks. Thus, modulation of both anabolic and catabolic responses may optimize the amount and mineral content of callus produced, which could be of clinical benefit in obtaining bone union.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据