4.5 Article

Use of artificial genomes in assessing methods for atypical gene detection

期刊

PLOS COMPUTATIONAL BIOLOGY
卷 1, 期 6, 页码 461-473

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pcbi.0010056

关键词

-

向作者/读者索取更多资源

Parametric methods for identifying laterally transferred genes exploit the directional mutational biases unique to each genome. Yet the development of new, more robust methods-as well as the evaluation and proper implementation of existing methods-relies on an arbitrary assessment of performance using real genomes, where the evolutionary histories of genes are not known. We have used the framework of a generalized hidden Markov model to create artificial genomes modeled after genuine genomes. To model a genome, core genes-those displaying patterns of mutational biases shared among large numbers of genes-are identified by a novel gene clustering approach based on the Akaike information criterion. Gene models derived from multiple core gene clusters are used to generate an artificial genome that models the properties of a genuine genome. Chimeric artificial genomes-representing those having experienced lateral gene transfer-were created by combining genes from multiple artificial genomes, and the performance of the parametric methods for identifying atypical genes was assessed directly. We found that a hidden Markov model that included multiple gene models, each trained on sets of genes representing the range of genotypic variability within a genome, could produce artificial genomes that mimicked the properties of genuine genomes. Moreover, different methods for detecting foreign genes performed differently-i.e., they had different sets of strengths and weaknesses-when identifying atypical genes within chimeric artificial genomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据