4.3 Article

Exploring the Jet/Accretion flow relationship in low disk luminosity sources

期刊

ASTROPHYSICS AND SPACE SCIENCE
卷 300, 期 1-3, 页码 189-195

出版社

SPRINGER
DOI: 10.1007/s10509-005-1186-7

关键词

X-rays : binaries; black hole physics; radiation mechanisms : non-thermal; accretion; accretion disks; X-rays : general

向作者/读者索取更多资源

Astrophysical jets seem to gain strength disproportionate to the power of their associated accretion flow, making low-luminosity sources ideal targets for studies of the role of outflows. Radio/X-ray correlations have supported the case for a strong relationship between the jets and the hard X-ray emitting regions, and here we explore the strongest scenario where the base of the jets subsumes the role of the corona. The properties of coronae, as inferred from spectral models, are very similar to what is empirically required at jet bases assuming conservation laws hold. We present a few preliminary fits to simultaneous radio and X-ray datasets from our GX 339-4 and Cyg X-1 campaigns. The fits are performed in detector space, and include a jet plus thermal disk continuum model, with added Gaussian line and non-relativistic reflection features similar to the approach of other X-ray models. We find that we can fit the entire radio through X-ray spectrum quite well, with any deviation occurring in the line/reflection region. The results suggest that a jet/corona unification can provide a reasonable description of the data. Future work will benefit from a more complex approach to the disk feedback features.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据