4.2 Article

Muscle activation and time to task failure differ with load type and contraction intensity for a human hand muscle

期刊

EXPERIMENTAL BRAIN RESEARCH
卷 167, 期 2, 页码 165-177

出版社

SPRINGER
DOI: 10.1007/s00221-005-0017-y

关键词

muscle fatigue; electromyography; isometric contraction

资金

  1. NIA NIH HHS [T32 AG00279] Funding Source: Medline
  2. NINDS NIH HHS [R01 NS43275] Funding Source: Medline

向作者/读者索取更多资源

Time to failure for sustained isometric contractions of the elbow flexors is briefer when maintaining a constant elbow angle while supporting an inertial load (position task) compared with exerting an equivalent torque against a rigid restraint (force task). Our primary purpose was to determine whether the effects of load type on time to task failure exist when motor unit recruitment cannot be enhanced during a sustained submaximal contraction of an intrinsic hand muscle. A second purpose was to determine whether a greater reserve remains in the muscle after early failure of the position task. Two groups of 10 strength-matched men performed the force and position tasks at either 20% or 60% of maximal force (MVC) with the first dorsal interosseus, followed by a second force task at the same relative intensity. The rate of increase in surface EMG was greater (P = 0.002) and time to failure was briefer (P = 0.005) for the position task (593 +/- 212 s) compared with the force task (983 +/- 328 s) at 20% MVC, whereas there were no task differences in these variables at 60% MVC (P >= 0.200). Time to failure for the second force tasks did not differ at either contraction intensity (P >= 0.743). These results demonstrate that previously observed effects of load type generalize to a hand muscle, although only for low-intensity contractions. For the position task at low forces, muscle activity increased more rapidly and no additional reserve remained in the muscle at failure compared with the force task. We propose that the briefer time to failure for the position task during sustained, low-intensity contractions is due to earlier recruitment of the motor unit pool.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据