4.6 Article

Star-formation in NGC 4038/4039 from broad and narrow band photometry: cluster destruction?

期刊

ASTRONOMY & ASTROPHYSICS
卷 443, 期 1, 页码 41-60

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20052908

关键词

galaxies : star clusters; galaxies : individual : NGC 4038/4039; galaxies : interactions

向作者/读者索取更多资源

Accurately determining the star formation history in NGC 4038/4039 - The Antennae - is hampered by variable and sometimes substantial extinction. We therefore used near infrared broad- and narrow-band images obtained with ISAAC at the VLT and with SOFI at the NTT to determine the recent star formation history in this prototypical merger. In combination with archival HST data, we determined ages, extinction, and other parameters for single star clusters, and properties of the cluster population as a whole. About 70% of the K-s-band detected star clusters with masses >= 10(5) M-. are younger than 10 Myr ( this is approximately an e-folding time for cluster ages), which we interpret as evidence of rapid dissolution but not free expansion. The total mass of K-band selected clusters is about 5 to 10 x 10(8) M-. and represents about 3- 6% of the total molecular gas. However, this takes only the detected clusters into account, and in view of the rapid dissolution, means that this is only a lower limit to the total mass of stars produced in clusters during the burst. Studies of cluster formation in other galaxies recently suggested short cluster dissolution timescales, too, which means that star formation rates may have been severely underestimated in the past. Extinction is strongly variable and very high in some regions, but around A(V) = 1.3 mag on average. Even though most clusters are detected at least in I-band, only the information about individual cluster ages and extinction allows us to avoid uncertainties of orders of magnitude in star formation rate estimates determined from optical fluxes. From the distribution of individual cluster extinction vs. age, which is significantly higher for clusters below 8-9 Myr than for older clusters, we infer that this is the time by which a typical cluster blows free of its native dust cocoon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据