4.6 Article

Protein kinase Cε induces systolic cardiac failure marked by exhausted inotropic reserve and intact Frank-Starling mechanism

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00454.2005

关键词

pressure-volume loops; cardiac myofilaments

资金

  1. NHLBI NIH HHS [P01-HL-62426, HL-63704] Funding Source: Medline

向作者/读者索取更多资源

Myofilament dysfunction is a common point of convergence for many forms of heart failure. Recently, we showed that cardiac overexpression of PKC epsilon initially depresses myofilament activity and then leads to a progression of changes characteristic of human heart failure. Here, we examined the effects of PKC epsilon on contractile reserve, Starling mechanism, and myofilament activation in this model of end-stage dilated cardiomyopathy. Pressure-volume loop analysis and echocardiography showed that the PKC epsilon mice have markedly compromised systolic function and increased end-diastolic volumes. Dobutamine challenge resulted in a small increase in contractility in PKC epsilon mice but failed to enhance cardiac output. The PKC epsilon mice showed a normal lengthdependent tension development in skinned cardiac muscle preparations, although Frank-Starling mechanism appeared to be compromised in the intact animal. Simultaneous measurement of tension and ATPase demonstrated that the maximum tension and ATPase were markedly lower in the PKC epsilon mice at any length or Ca2+ concentration. However, the tension cost was also lower indicating less energy expenditure. We conclude 1) that prolonged overexpression of PKC epsilon ultimately leads to a dilated cardiomyopathy marked by exhausted contractile reserve, 2) that PKC epsilon does not compromise the Frank-Starling mechanism at the myofilament level, and 3) that the Starling curve excursion is limited by the inotropic state of the heart. These results reflect the significance of the primary myofilament contractilopathy induced by phosphorylation and imply a role for PKC epsilon-mediated phosphorylation in myofilament physiology and the pathophysiology of decompensated cardiac failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据