4.8 Article

Consistent transcriptional silencing of 35S-driven transgenes in gentian

期刊

PLANT JOURNAL
卷 44, 期 4, 页码 541-556

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-313X.2005.02556.x

关键词

transgene silencing; DNA methylation; gentian; bisulfite genomic sequencing; 35S promoter; T-DNA

向作者/读者索取更多资源

In this study, no transgenic gentian (Gentiana triflora x Gentiana scabra) plants produced via Agrobacterium-mediated transformation exhibited transgene (GtMADS, gentian-derived MADS-box genes or sGFP, green fluorescent protein) expression in their leaf tissues, despite the use of constitutive Cauliflower mosaic virus (CaMV) 35S promoter. Strikingly, no expression of the selectable marker gene (bar) used for bialaphos selection was observed. To investigate the possible cause of this drastic transgene silencing, methylation-specific sequences were analysed by bisulfite genomic sequencing using tobacco transformants as a control. Highly methylated cytosine residues of CpG and CpWpG (W contains A or T) sites were distinctively detected in the promoter and 5' coding regions of the transgenes 35S-bar and 35S-GtMADS in all gentian lines analysed. These lines also exhibited various degrees of cytosine methylation in asymmetrical sequences. The methylation frequencies in the other transgene, nopaline synthase (NOS) promoter-driven nptII, and the endogenous GtMADS gene coding region, were much lower and were variable compared with those in the 35S promoter regions. Transgene methylation was observed in the bialaphos-selected transgenic calluses expressing the transgenes, and methylation sequences were distributed preferentially around the as-1 element in the 35S promoter. Calluses derived from leaf tissues of silenced transgenic gentian also exhibited transgene suppression, but expression was recovered by treatment with the methylation inhibitor 5-aza-2'-deoxycytidine (aza-dC). These results indicated that cytosine methylation occurs exclusively in the 35S promoter regions of the expressed transgenes during selection of gentian transformants, causing transcriptional gene silencing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据