4.7 Article

Elasticity theory and shape transitions of viral shells

期刊

PHYSICAL REVIEW E
卷 72, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.051923

关键词

-

向作者/读者索取更多资源

Recently, continuum elasticity theory has been applied to explain the shape transition of icosahedral viral capsids-single-protein-thick crystalline shells-from spherical to buckled or faceted as their radius increases through a critical value determined by the competition between stretching and bending energies of a closed two-dimensional (2D) elastic network. In the present work we generalize this approach to capsids with nonicosahedral symmetries, e.g., spherocylindrical and conical shells. One key additional physical ingredient is the role played by nonzero spontaneous curvature. Another is associated with the special way in which the energy of the 12 topologically required fivefold sites depends on the background local curvature of the shell in which they are embedded. Systematic evaluation of these contributions leads to a shape phase diagram in which transitions are observed from icosahedral to spherocylindrical capsids as a function of the ratio of stretching to bending energies and of the spontaneous curvature of the 2D protein network. We find that the transition from icosahedral to spherocylindrical symmetry is continuous or weakly first order near the onset of buckling, leading to extensive shape degeneracy. These results are discussed in the context of experimentally observed variations in the shapes of a variety of viral capsids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据