4.7 Article

Effects of gravitational evolution, biasing, and redshift space distortion on topology

期刊

ASTROPHYSICAL JOURNAL
卷 633, 期 1, 页码 1-10

出版社

IOP PUBLISHING LTD
DOI: 10.1086/452621

关键词

cosmology : theory; large-scale structure of universe; methods : n-body simulations

向作者/读者索取更多资源

We have studied the dependence of topology of large-scale structure on tracer, gravitational evolution, redshift space distortion, and cosmology. A series of large N-body simulations of the Lambda CDM and SCDM models that have evolved 1.1 or 8.6 billion particles are used in the study. Evolution of the genus statistic, used as a topology measure, from redshift 8 to 0 is accurately calculated over a wide range of smoothing scales using the simulations. The tracers of large-scale structure considered are the cold dark matter (CDM), biased peaks in the initial density field, dark halos, and galaxies'' populating the dark halos in accordance with a halo occupation distribution ( HOD) model. We have found that the effects of biasing, gravitational evolution, and initial conditions on topology of large-scale structure are all comparable. The redshift space distortion effects are relatively small down to about 5 h(-1) Mpc for all tracers except for the high-threshold part of the genus curve. The gravitational effects are found to be well modeled by analytic perturbation theory when the CDM distribution is considered. But the direction of gravitational evolution of topology can be even reversed for different tracers. For example, the shift parameter of the genus curve evolves in opposite directions for matter and HOD galaxies at large scales. At small scales, there are interesting deviations of the genus curve of dark halos and galaxies from that of matter in our initially Gaussian simulations. The deviations should be understood as due to combined effects of gravitational evolution and biasing. This fact gives us an important opportunity: topology of large-scale structure can be used as a strong constraint on galaxy formation mechanisms. At scales larger than 20 h(-1) Mpc all the above effects gradually decrease. With good knowledge of the effects of nonlinear gravitational evolution and galaxy biasing on topology, one can also constrain the Gaussian random phase initial conditions hypothesis to high accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据