4.6 Article

Band-edge diagrams for strained III-V semiconductor quantum wells, wires, and dots

期刊

PHYSICAL REVIEW B
卷 72, 期 20, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.205311

关键词

-

向作者/读者索取更多资源

We have calculated band-edge energies for most combinations of zinc blende AlN, GaN, InN, GaP, GaAs, InP, InAs, GaSb, and InSb in which one material is strained to the other. Calculations were done for three different geometries (quantum wells, wires, and dots) and mean effective masses were computed in order to estimate confinement energies. For quantum wells, we have also calculated band-edges for ternary alloys. Energy gaps, including confinement, may be easily and accurately estimated using band energies and a simple effective mass approximation, yielding excellent agreement with experimental results. By calculating all material combinations we have identified interesting material combinations, such as artificial donors, that have not been experimentally realized. The calculations were perfomed using strain-dependent k center dot p theory and provide a comprehensive overview of band structures for strained heterostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据