4.7 Article

Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter:: A tool for plant research and biotechnology

期刊

PLANT MOLECULAR BIOLOGY
卷 59, 期 5, 页码 697-711

出版社

SPRINGER
DOI: 10.1007/s11103-005-0889-z

关键词

acetyl salicylic acid; actin cytoskeleton; benzyl alcohol; GFP-talin; beta-glucuronidase; Gmhsp17.3B promoter; inducible gene-expression system

向作者/读者索取更多资源

The ability to express tightly controlled amounts of endogenous and recombinant proteins in plant cells is an essential tool for research and biotechnology. Here, the inducibility of the soybean heat-shock Gmhsp17.3B promoter was addressed in the moss Physcomitrella patens, using beta-glucuronidase (GUS) and an F-actin marker (GFP-talin) as reporter proteins. In stably transformed moss lines, Gmhsp17.3B-driven GUS expression was extremely low at 25 degrees C. In contrast, a short non-damaging heat-treatment at 38 degrees C rapidly induced reporter expression over three orders of magnitude, enabling GUS accumulation and the labelling of F-actin cytoskeleton in all cell types and tissues. Induction levels were tightly proportional to the temperature and duration of the heat treatment, allowing fine-tuning of protein expression. Repeated heating/cooling cycles led to the massive GUS accumulation, up to 2.3% of the total soluble proteins. The anti-inflammatory drug acetyl salicylic acid (ASA) and the membrane-fluidiser benzyl alcohol (BA) also induced GUS expression at 25 degrees C, allowing the production of recombinant proteins without heat-treatment. The Gmhsp17.3B promoter thus provides a reliable versatile conditional promoter for the controlled expression of recombinant proteins in the moss P. patens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据