4.7 Article

Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells

期刊

STEM CELLS
卷 23, 期 10, 页码 1579-1588

出版社

WILEY
DOI: 10.1634/stemcells.2005-0111

关键词

retinal transplantation; retinal progenitor cells; cell survival; biodegradable polymer; retinal regeneration

向作者/读者索取更多资源

Retinal progenitor cells (RPCs) are multipotent central nervous system precursors that give rise to all of the cell types of the retina during development. Several groups have reported that mammalian RPCs can be isolated and expanded in culture and can differentiate into retinal neurons upon grafting to the mature, diseased eye. However, cell delivery and survival remain formidable obstacles to application of RPCs in a clinical setting. Because biodegradable poly mer/progenitor constructs have been shown to be capable of tissue generation in other compartments, we evaluated the survival, migration, and differentiation of RPCs delivered on PLLA/PLGA polymer substrates to the mouse subretinal space and compared these results to conventional injections of RPCs. Polymer composite grafts resulted in a near 10-fold increase in the number of surviving cells after 4 weeks, with a 16-fold increase in cell delivery. Grafted RPCs migrated into the host retina and expressed the mature markers neurofilament-200, glial fibrillary acidic protein, protein kinase C-alpha, recoverin, and rhodopsin. We conclude that biodegradable polymer/progenitor cell composite grafts provide an effective means of increasing progenitor cell survival and overall yield when transplanting to sites within the central nervous system such as the retina. STEM CELLS 2005:23:1579-1588.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据