4.6 Article

Resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for S phase arrest in human ovarian carcinoma Ovcar-3 cells

期刊

CARCINOGENESIS
卷 26, 期 11, 页码 1978-1987

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgi165

关键词

-

类别

资金

  1. NCI NIH HHS [CA64514, CA046934] Funding Source: Medline

向作者/读者索取更多资源

Resveratrol is one of the most extensively studied cancer chemopreventive agents; however, its mechanisms of action are not completely understood. Here, we observed that resveratrol induces S phase arrest via Tyr15 phosphorylation of Cdc2 in human ovarian carcinoma Ovcar-3 cells. Overexpression of Cdc2AF, a mutant resistant to Thr14 and Tyr15 phosphorylation, ablated resveratrol-induced S phase arrest. Further upstream, we observed that resveratrol causes phosphorylation of cell division cycle 25C (Cdc25C) tyrosine phosphatase via the activation of checkpoint kinases Chk1 and Chk2, which in turn were activated via ATM (ataxia telangiectasia mutated)/ATR (ataxia telangiectasia-Rad3-related) kinase in response to DNA damage, as resveratrol also increased phospho-H2A.X (Ser139), which is known to be phosphorylated by ATM/ATR in response to DNA damage. The involvement of these molecules in resveratrol-induced S phase was also supported by the studies showing that addition of ATM/ATR inhibitor caffeine reverses resveratrol-caused activation of ATM/ATR-Chk1/2 as well as phosphorylation of Cdc25C, Cdc2 and H2A.X, and S phase arrest. In additional studies assessing whether observed effects of resveratrol are specific to Ovcar-3 cells, we observed that it also induces S phase arrest and H2A.X (Ser139) phosphorylation in other ovarian cancer cell lines PA-1 and SKOV-3, albeit at different levels; whereas, resveratrol showed only marginal S phase arrest in normal human foreskin fibroblasts with undetectable level of phospho-H2A.X (Ser139). These findings for the first time identify that resveratrol causes Cdc2-tyr15 phosphorylation via ATM/ATR-Chk1/2-Cdc25C pathway as a central mechanism for DNA damage and S phase arrest selectively in ovarian cancer cells, and provide a rationale for the potential efficacy of ATM/ATR agonists in the prevention and intervention of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据