4.7 Article

An adaptive multi-element generalized polynomial chaos method for stochastic differential equations

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 209, 期 2, 页码 617-642

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2005.03.023

关键词

uncertainty; polynomial chaos; discontinuities

向作者/读者索取更多资源

We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to deal with long-term integration and discontinuities in stochastic differential equations. We first present this method for Legendre-chaos corresponding to uniform random inputs, and subsequently we generalize it to other random inputs. The main idea of ME-gPC is to decompose the space of random inputs when the relative error in variance becomes greater than a threshold value. In each subdomain or random element, we then employ a generalized polynomial chaos expansion. We develop a criterion to perform such a decomposition adaptively, and demonstrate its effectiveness for ODEs, including the Kraichnan-Orszag three-mode problem, as well as advection-diffusion problems. The new method is similar to spectral element method for deterministic problems but with h-p discretization of the random space. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据