4.8 Article

Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 21, 页码 6887-6894

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac050902o

关键词

-

向作者/读者索取更多资源

The adverse effects of nonvolatile salts on the electrospray (ESI) mass spectra of proteins and other biological analytes are a major obstacle for a wide range of applications. Numerous sample cleanup approaches have been devised to facilitate ESI-MS analyses. Recently developed microdialysis techniques can shorten desalting times down to several minutes, the bottleneck being diffusion of the contaminant through a semipermeable membrane. This work introduces an approach that allows the on-line desalting of macromolecule solutions within tens of milliseconds. The device does not employ a membrane; instead, it uses a two-layered laminar flow geometry that exploits the differential diffusion of macromolecular analytes and low molecular weight contaminants. To maximize desalting efficiency, diffusive exchange between the flow layers is permitted only for such a time as to allow full exchange of salt, while incurring minimal macromolecule exchange. Computer simulations and optical studies show that the device can reduce the salt concentration by roughly 1 order of magnitude, while retaining similar to 70% of the original protein concentration. Application of this approach to the on-line purification of salt-contaminated protein solutions in ESI-MS results in dramatic improvements of both the signal-to-noise ratio and the absolute signal intensity. However, efficient desalting requires the diffusion coefficients of salt and analyte to differ by roughly 1 order of magnitude or more. This technique has potential to facilitate high-throughput analyses of biological macromolecules directly from complex matrixes. In addition, it may become a valuable tool for process monitoring and for on-line kinetic studies on biological systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据