4.5 Article

Nanostructures and molecular force bases of a highly sensitive capacitive immunosensor

期刊

PROTEOMICS
卷 5, 期 17, 页码 4347-4353

出版社

WILEY
DOI: 10.1002/pmic.200500017

关键词

apo-transferrin; atomic force microscope; holo-transferrin; immunosensor; nanotechnology

资金

  1. NCRR NIH HHS [R01 RR013601, R01 RR013601-07, RR13601] Funding Source: Medline
  2. NHLBI NIH HHS [HL64560, R01 HL064560, R01 HL064560-07] Funding Source: Medline

向作者/读者索取更多资源

While biosensors have been constructed using various strategies, there is no report describing nanostructures of antibody-immobilized electrode interface in an immunosensor. Here, atomic force microscopy (AFM) and electrochemistry analyses were employed to construct and characterize the nanostructures and electrochemistry of biosensing surface that was created by a sequential self-assembling of bioactive aminobenzenthiol oligomer (o-ABT), glutareldehyde and anti-transferrin (anti-Tf) antibody on the electrode gold surface. Under AFM, a complete coverage of bioactive o-ABT interface could be achieved by anti-Tf antibody at an optimal concentration. The anti-Tf antibody immobilized on electrode surface of the immunosensor exhibited globular-shape topography with some degree of aggregation. Extensive force-curve analysis allowed mapping the functional spots of the anti-Tf immunosensor. Surprisingly, although immunosensing surface was fully covered by anti-Tf antibodies at the optimal concentration, only about 52% of coated anti-Tf antibody molecules (spots) on the electrode surface were able to specifically capture or bind Tf antigen under AFM. Despite limited functional spots, however, the anti-Tf immunosensor was highly specific and sensitive for sensitizing Tf antigen in solution. The anti-Tf molecules on the immunosensor exhibited a greater molecular force bound to holo-Tf (iron-containing form of Tf) than that to apo-Tf (iron-absent form of Tf). Consistently, the anti-Tf immunosensor had a greater electrochemical capacity to sensitize apo-Tf than holo-Tf, supporting the molecular force-based finding by AFM. Thus, the present study elucidated the nanostructures and molecular force bases for the immunosensing capacity of a highly sensitive capacitive immunosensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据