4.6 Article

Mechanical effects of optical resonators on driven trapped atoms: Ground-state cooling in a high-finesse cavity

期刊

PHYSICAL REVIEW A
卷 72, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.053408

关键词

-

向作者/读者索取更多资源

We investigate theoretically the mechanical effects of light on atoms trapped by an external potential, whose dipole transition couples to the mode of an optical resonator and is driven by a laser. We derive an analytical expression for the quantum center-of-mass dynamics, which is valid in presence of a tight external potential. This equation has broad validity and allows for a transparent interpretation of the individual scattering processes leading to cooling. We show that the dynamics is a competition of the mechanical effects of the cavity and of the laser photons, which may mutually interfere. We focus on the good-cavity limit and identify novel cooling schemes, which are based on quantum interference effects and lead to efficient ground-state cooling in experimentally accessible parameter regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据