4.2 Article

Tectonic, climatic and hydrothermal control on sedimentation and water chemistry of northern Lake Malawi (Nyasa), Tanzania

期刊

JOURNAL OF AFRICAN EARTH SCIENCES
卷 43, 期 4, 页码 433-446

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jafrearsci.2005.09.004

关键词

East African rift; Lake Malawi (Nyasa); quaternary; tectonics; seismic profiles; heat flow; sediments; water chemistry; climate

向作者/读者索取更多资源

This paper presents a multi-disciplinary characterisation of processes that influence sedimentation and lake water chemistry in the northern part of the Lake Malawi (or Lake Nyasa), East Africa. This characterisation is based on geophysical (heat-flow), tectonic, hydrological, hydrochemical (major elements, stable isotopes) and sedimentological (seismic profiles, core mineralogy) studies of data acquired from 1990 to 1994 during the CASIMIR project (Comparative Analysis of Sedimentary Infill Mechanisms in Rifts). Sub-surface activity is expressed through seismic and volcanic activity, as well as elevated heat-flow values, both beneath the lake and the surrounding area; hydrothermal activity is observed in the watershed however it was not clearly identified in the sub-lacustrine environment. Relatively high heat-flow values (80-90 mW/m(2)) and the chemical composition of hydrothermal fluids in hot springs suggest the presence of a magmatic body at depth. The influence of Quaternary tectonic activity on sedimentary dynamics and infilling is observed not only on land but also in the lake through high-resolution seismic profiles. The main feature is a general tilting of the Kyela Plain as shown by a shift in the river course. The Quaternary stacking pattern of seven sedimentary sequences identified on a grid of high-resolution seismic reflection profiles represents a complete long-term lake-level cycle, from a lake lowstand at about 320 m below the present level to the present-day lake high-stand. The North-Kiwira and Songwe River delta systems, composed of a number of stacked lobes, were developed in response to the interplay between gradual lake-level rise, tectonic movement and sediment input. The river dynamics is also recorded in a short core by a mineralogical evolution probably due to a decrease of detrital inputs from the Songwe River in response to hydroclimatic changes. Such changes are very important as this northern part of the watershed is considered as a recharge zone for the entire take. Sedimentological patterns (from shallow depth to about 240 m water depth) and hydrochemistry are both influenced by watershed characteristics (pedology, geology, vegetation, hydrology, climate, etc.) but also by lacustrine biological processes: diatom productivity in epilimnetic water and degradation or preservation in deeper waters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据