4.8 Article

Electronic relaxation dynamics of water cluster anions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 43, 页码 15283-15295

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja052811e

关键词

-

向作者/读者索取更多资源

The electronic relaxation dynamics of water cluster anions, (H2O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p <- s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D2O)/tau(H2O) similar to 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n >= 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 <= n <= 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据