4.6 Article

Biochemical basis for retinol deficiency induced by the I41N and G75D mutations in human plasma retinol-binding protein

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2005.08.227

关键词

retinol-binding protein; point mutations; retinol delivery; vitamin A deficiency; transthyretin; phospholipid membranes

向作者/读者索取更多资源

Retinol-binding protein (RBP) is the retinol-specific carrier protein present in plasma, where it circulates almost entirely bound to thyroxine-binding transthyretin (TTR). Recently, depressed plasma retinol and RBP levels in carriers of the 141N and G75D RBP point mutations have been reported. We show here that although recombinant human N41 and D75 RBPs can form complexes with retinol and TTR in vitro, the retinol-mutated RBP complexes are significantly less stable than human normal holo-RBP, as revealed by the markedly facilitated retinol release by mutated holo-RBPs to phospholipid membranes, in accordance with the location of mutated residues inside the RBP retinol-binding cavity. Taken together, the data are consistent with the 141N and G75D point mutations being the cause of an altered interaction of retinol with RBP, resulting in a remarkably reduced stability of the retinol-RBP complex, which in turn can lead to the lowering of plasma retinol and RBP levels. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据