4.7 Article

A molecular-dynamics study of lipid bilayers: Effects of the hydrocarbon chain length on permeability

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2102900

关键词

-

向作者/读者索取更多资源

In this paper, we investigate the effects of the hydrocarbon chain length of lipid molecules on the permeation process of small molecules through lipid bilayers. We perform molecular-dynamics simulations using three kinds of lipid molecules with different chain length: dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmiltoylphosphatidylcholine. Free-energy profiles of O-2, CO, NO, and water molecules are calculated by means of the cavity insertion Widom method and the probability ratio method. We show that the lipid membrane with longer chains has a larger and wider energy barrier. The local diffusion coefficients of water across the bilayers are also calculated by the force autocorrelation function method and the velocity autocorrelation function method. The local diffusion coefficients in the bilayers are not altered significantly by the chain length. We estimate the permeability coefficients of water across the three membranes according to the solubility-diffusion model; we find that the water permeability decreases modestly with increasing chain length of the lipid molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据