4.6 Article

SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional actvity and is down-regulated in hyperinsulinemic obese mice

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 45, 页码 37669-37680

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M505392200

关键词

-

向作者/读者索取更多资源

In obesity-related insulin resistance, pancreatic islets compensate for insulin resistance by increasing secretory capacity. Here, we report the identification of sex-determining region Y-box 6 (SOX6), a member of the high mobility group box superfamily of transcription factors, as a co-repressor for pancreatic-duodenal homeobox factor-1 (PDX1). SOX6 mRNA levels were profoundly reduced by both a long term high fat feeding protocol in normal mice and in genetically obese ob/ob mice on a normal chow diet. Interestingly, we show that SOX6 is expressed in adult pancreatic insulin-producing beta-cells and that overexpression of SOX6 decreased glucose-stimulated insulin secretion, which was accompanied by decreased ATP/ADP ratio, Ca2+ mobilization, proinsulin content, and insulin gene expression. In a complementary fashion, depletion of SOX6 by small interfering RNAs augmented glucose-stimulated insulin secretion in insulinoma mouse MIN6 and rat INS-1E cells. These effects can be explained by our mechanistic studies that show SOX6 acts to suppress PDX1 stimulation of the insulin II promoter through a direct protein/protein interaction. Furthermore, SOX6 retroviral expression decreased acetylation of histones H3 and H4 in chromatin from the promoter for the insulin II gene, suggesting that SOX6 may decrease PDX1 stimulation through changes in chromatin structure at specific promoters. These results suggest that perturbations in transcriptional regulation that are coordinated through SOX6 and PDX1 in beta-cells may contribute to the beta-cell adaptation in obesity-related insulin resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据