4.7 Article

Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning

期刊

POLYMER
卷 46, 期 23, 页码 10355-10363

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2005.07.106

关键词

multiwalled carbon nanotube composites; polycarbonate; melt spinning

向作者/读者索取更多资源

A conductive polycarbonate (PC) composite containing 2 wt% multiwalled carbon nanotubes (MWNT) and pure PC were melt spun using a piston type spinning device. Different take-up velocities up to 800 m/min and throughputs leading to draw down ratios up to 250 were used. The composite material of PC with MWNT was prepared by diluting a PC based masterbatch consisting of 15 wt% MWNT by melt mixing in an extruder. The alignment of the nanotubes within melt spun fibers with draw down ratios up to 126 was investigated by TEM and Raman spectroscopy. The nanotubes alignm their length axis along the fiber axis increasingly with the draw down ratio, however, the curved shape of the nanotubes still exist in the melt spun fibers. At higher draw down ratios, the MWNT started to align by reducing their curvature. Polarized Raman spectroscopy indicated that the DID and GIG ratios parallel/perpendicular to the fiber axis increase for both MWNT bands in a similar manner with the draw down ratio. Interestingly, with increasing alignment electrical conductivity of the fibers is lost. Mechanical investigations revealed that at low spinning speeds elongation at break and tensile strength of the composite are lower than those of the pure PC. However, at the highest take-up velocity of 800 m/min the elongation at break is higher and true stress at break of the composite fiber is comparable to the pure PC fiber. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据