4.6 Article

Ab initio study of the radiation pressure on dielectric and magnetic media

期刊

OPTICS EXPRESS
卷 13, 期 23, 页码 9280-9291

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPEX.13.009280

关键词

-

类别

向作者/读者索取更多资源

The Maxwell stress tensor and the distributed Lorentz force are applied to calculate forces on lossless media and are shown to be in excellent agreement. From the Maxwell stress tensor, we derive analytical formulae for the forces on both a half-space and a slab under plane wave incidence. It is shown that a normally incident plane wave pushes the slab in the wave propagation direction, while it pulls the half-space toward the incoming wave. Zero tangential force is derived at a boundary between two lossless media, regardless of incident angle. The distributed Lorentz force is applied to the slab in a direct way, while the half-space is dealt with by introducing a finite conductivity. In this regard, we show that the ohmic losses have to be properly accounted for, otherwise differing results are obtained. This contribution, together with a generalization of the formulation to magnetic materials, establishes the method on solid theoretical grounds. Agreement between the two methods is also demonstrated for the case of a 2-D circular dielectric particle. (c) 2005 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据