4.6 Article

Pressure-dependent photoluminescence of ZnO nanosheets

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2132519

关键词

-

向作者/读者索取更多资源

Photoluminescence and Raman spectra of ZnO single-crystal nanosheets have been studied as a function of applied hydrostatic pressure using the diamond-anvil-cell technique at room temperature. The ZnO nanosheets synthesized via a vapor transport process have uniform plane surfaces with lateral dimensions up to several microns and thickness of similar to 100 nm. In terms of Raman results, the ZnO nanosheets underwent a transition from wurtzite to rock-salt structure with an increase of pressure, and the phase-transition pressure was measured to be about 11.2 GPa. However, a strong near-band-edge UV emission of ZnO nanosheets was observed with the applied pressure up to 20.0 GPa. Simultaneously, the emission peak shifted to higher-energy side with increasing pressure. By examining the dependence of the near-band-edge emission peak on the applied pressure, the pressure coefficient of the direct Gamma band gap in the wurtzite ZnO nanosheets was determined. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据