4.4 Article

Isomers of epidermal growth factor with Ser⇒Cys mutation at the N-terminal sequence:: Isomerization, stability, unfolding, refolding, and structure

期刊

BIOCHEMISTRY
卷 44, 期 45, 页码 15032-15041

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi051399c

关键词

-

向作者/读者索取更多资源

The structure of human epidermal growth factor (EGF, 53 amino acids) comprises three distinct loops (A, B, and C) connected correspondingly by the three native disulfide bonds, Cys(6)-CyS20, CYS14-CyS31, and Cys(33)-CyS42. The connection of Cys(6) and Cys(20) forming the N-terminal A loop is essential for the biological activity of EGF [Barnham et al. (1998) Protein Sci. 7, 1738-1749] and has also been shown to represent a major kinetic trap in the oxidative folding of EGF [Chang et al. (2001) J. Biol. Chem. 276, 4845-4852]. To further understand the chemical nature of this kinetic trap, we have prepared three EGF mutants each with a single Ser double right arrow Cys mutation at Ser residues (Ser(2), Set(4), and Ser(9)) flanking Cys(6). This allows competition between Cys(6) and mutated CyS2, CyS4, and Cys(9) to link with Cys(20) and to form EGF isomers containing different sizes of the A loop. The results show that, in the cases of EGF(S2C) and EGF(S4C), native Cys(6)-Cys(20) is favored over Cys(2)-Cys(20) and Cys(4)-Cys(20) by 4.5- and 9-fold, respectively, in the state of equilibrium. However, in the case of EGF(S9C), a non-native Cys(9)-Cys(20) is thermodynamically more stable than the native Cys(6)-Cys(20) by a free-energy difference (Delta G degrees) of 1.12 kcal/mol. Implications of these data in the formation of kinetic trap of EGF folding are discussed. Stabilized isomers of EGF were further generated from denaturation of wild-type and mutant EGF via the method of disulfide scrambling. Properties of these diverse isomers of EGF, including their isomerization, stability, unfolding, refolding, and disulfide structures, are described in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据