4.3 Article

Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures:: Spatial propagation of differential flexibility in rubredoxin hybrids

期刊

出版社

WILEY
DOI: 10.1002/prot.20594

关键词

hydrogen exchange; conformational flexibility; thermal stability

资金

  1. NIGMS NIH HHS [GM 64736] Funding Source: Medline

向作者/读者索取更多资源

The extreme thermal stability of proteins from hyperthermophilic organisms is widely believed to arise from an increased conformational. rigidity in the native state. In apparent contrast to this paradigm, both Pyrococcus furiosus (Pf) rubredoxin, the most thermostable protein characterized to date, and its Clostridium pasteurianum (Cp) mesophile homolog undergo a transient conformational opening of their multi-turn segments, which is more favorable in hyperthermophile proteins below room temperature. Substitution of the hyperthermophile multi-turn sequence into the mesophile protein sequence yields a hybrid, (14-33(Pf)) Cp, that exhibits a 12 degrees increase in its reversible thermal unfolding transition midpoint. Nuclear magnetic resonance (NMR) magnetization transfer-based hydrogen exchange was used to monitor backbone conformational dynamics in the subsecond time regime. Despite the substantially increased thermostability, flexibility throughout the entire main chain of the more thermostable hybrid is equal to or greater than that of the wild type mesophile rubredoxin near its normal growth temperature. In comparison to the identical core residues of the (14-33(Pf)) Cp rubredoxin hybrid, six spatially clustered residues in the parental mesophile protein exhibit a substantially larger temperature dependence of exchange. The exchange behavior of these six residues closely matches that observed in the multi-turn segment, consistent with a more extensive conformational. process. These six core residues exhibit a much weaker temperature dependence of exchange in the (14-33(Pf)) Cp hybrid, similar to that observed for the multi-turn segment in its parental Pf rubredoxin. These results suggest that differential temperature dependence of flexibility can underlie variations in thermostability observed for mesophile versus hyperthermophile homologs. Proteins 2005;61:608-616. (c) 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据