4.7 Article

Analysis of differentially-regulated genes within a regulatory network by GPS genome navigation

期刊

BIOINFORMATICS
卷 21, 期 22, 页码 4073-4083

出版社

OXFORD UNIV PRESS
DOI: 10.1093/bioinformatics/bti672

关键词

-

资金

  1. NIAID NIH HHS [AI49561] Funding Source: Medline

向作者/读者索取更多资源

Motivation: A critical challenge of the post-genomic era is to understand how genes are differentially regulated even when they belong to a given network. Because the fundamental mechanism controlling gene expression operates at the level of transcription initiation, computational techniques have been developed that identify cis regulatory features and map such features into expression patterns to classify genes into distinct networks. However, these methods are not focused on distinguishing between differentially regulated genes within a given network. Here we describe an unsupervised machine learning method, termed GPS for gene promoter scan, that discriminates among co-regulated promoters by simultaneously considering both cis-acting regulatory features and gene expression. GPS is particularly useful for knowledge discovery in environments with reduced datasets and high levels of uncertainty. Results: Application of this method to the enteric bacteria Escherichia coli and Salmonella enterica uncovered novel members, as well as regulatory interactions in the regulon controlled by the PhoP protein that were not discovered using previous approaches. The predictions made by GPS were experimentally validated to establish that the PhoP protein uses multiple mechanisms to control gene transcription, and is a central element in a highly connected network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据