4.6 Review Book Chapter

Advances in correlated electronic structure methods for solids, surfaces, and nanostructures

期刊

ANNUAL REVIEW OF PHYSICAL CHEMISTRY
卷 59, 期 -, 页码 261-290

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev.physchem.59.032607.093528

关键词

density functional theory; excited states; electron correlation; embedded cluster models

向作者/读者索取更多资源

Calculations of the electronic structure of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable that their application is nearly as routine as quantum chemistry is for molecules. We aim to introduce chemists to the pros and cons of first-principles methods that can provide atomic-scale insight into the properties and chemistry of bulk materials, interfaces, and nanostructures. The techniques we review include the ubiquitous density functional theory (DFT), which is often sufficient, especially for metals; extensions such as DFT + U and hybrid DFT, which incorporate exact exchange to rid DFT of its spurious self-interactions (critical for some semiconductors and strongly correlated materials); many-body Green's function (GW and Bethe-Salpeter) methods for excited states; quantum Monte Carlo, in principle an exact theory but for which forces (hence structure optimization and dynamics) are problematic; and embedding theories that locally refine the quantum treatment to improve accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据