4.8 Article

Identifying turbulent energy distributions in real, rather than fourier, space

期刊

PHYSICAL REVIEW LETTERS
卷 95, 期 21, 页码 -

出版社

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.95.214501

关键词

-

向作者/读者索取更多资源

It has been suggested that the equilibrium-range properties of high-Reynolds number turbulence are more readily observed in spectral space, using E(k) or T(k), than in real space, using second- or third-order structure functions. For example, the -5/3 law is usually easier to see in experimental data than the equivalent 2/3 law. We argue that this is not an implicit feature of a real-space description of turbulence. Rather, it is because the second-order structure function mixes small and large-scale information. To remedy this problem we adopt a real-space function, the signature function, which plays the role of an energy density, somewhat analogous to E(k). In this Letter we determine the form of the signature function in a variety of turbulent flows. We find that dissipation-range phenomena, such as the so-called bottleneck effect, are evident in the signature function, while absent in the structure function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据