4.7 Article

Sharp interface Cartesian grid method II: A technique for simulating droplet interactions with surfaces of arbitrary shape

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 210, 期 1, 页码 32-54

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2005.03.032

关键词

multiphase flow; sharp interface method; Cartesian grid; level-sets; droplet impact

向作者/读者索取更多资源

A fixed-grid, sharp interface method is developed to simulate droplet impact and spreading on surfaces of arbitrary shape. A finite-difference technique is used to discretize the incompressible Navier-Stokes equations on a Cartesian grid. To compute flow around embedded solid boundaries, a previously developed sharp interface method for solid immersed boundaries is used. The ghost fluid method (GFM) is used for fluid-fluid interfaces. The model accounts for the effects of discontinuities such as density and viscosity jumps and singular sources such as surface tension in both bubble and droplet simulations. With a level-set representation of the propagating interface, large deformations of the boundary can be handled easily. The model successfully captures the essential features of interactions between fluid-fluid and solid-fluid phases during impact and spreading. Moving contact lines are modeled with contact angle hysteresis and contact line motion on non-planar surfaces is computed. Experimental observations and other simulation results are used to validate the calculations. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据