4.5 Article

Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains

期刊

JOURNAL OF BIOTECHNOLOGY
卷 120, 期 3, 页码 284-295

出版社

ELSEVIER
DOI: 10.1016/j.jbiotec.2005.06.013

关键词

Saccharomyces cerevisiae; heterologous protein production; beta-glucosidase cellobiose-fermenting yeast

向作者/读者索取更多资源

beta-Glucosidase genes of fungal origins were isolated and heterologously expressed in Saccharomyces cerevisiae to enable growth on the disaccharide, cellobiose. To promote secretion of the beta-glucosidases, the genes were fused to the secretion signal of the Trichoderma reesei xyn2 gene and constitutively expressed from a multi-copy yeast expression vector under transcriptional control of the S. cerevisiae PGK1 promoter and terminator. The resulting recombinant enzymes were characterized with respect to pH and temperature optimum, as well as kinetic properties. The two most promising enzymes, BGL1 from Saccharomycopsis fibuligera and Bg1A from Aspergillus kawachii, were anchored to the yeast cell surface by fusing the mature proteins to the alpha-agglutinin (AG alpha 1) or cell wall protein 2 (Cwp2) peptides. The maximum specific growth rates (mu(max)) of the recombinant S. cerevisiae strains were determined in batch cultivation. S. cerevisiae secreting the recombinant S. fibuligera BGL1 enzyme sustained growth aerobically and anaerobically, in minimal medium containing 5 g L-1 cellobiose at 0.23 h(-1) (compared to 0.29 h(-1) on glucose) and 0.18 h(-1) (compared to 0.25 h(-1) on glucose), respectively. Substrate consumption and product formation were determined to evaluate product yields in glucose and cellobiose. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据