4.7 Article

Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: Role of inhibitory inputs

期刊

JOURNAL OF NEUROSCIENCE
卷 25, 期 47, 页码 10952-10959

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2451-05.2005

关键词

dorsal cochlear nucleus; glycine; aging; fusiform cell; auditory; inhibition

资金

  1. NIDCD NIH HHS [DC00151, R56 DC000151, R01 DC000151, F31 DC000151] Funding Source: Medline

向作者/读者索取更多资源

Age-related hearing loss frequently results in a loss in the ability to discriminate speech signals, especially in noise. This is attributable, in part, to a loss in temporal resolving power and ability to adjust dynamic range. Circuits in the adult dorsal cochlear nucleus ( DCN) have been shown to preserve signal in background noise. Fusiform cells, major DCN output neurons, receive focused glycinergic inputs from tonotopically aligned vertical cells that also project to the ventral cochlear nucleus. Glycine-mediated inhibition onto fusiform cells results in decreased tone-evoked activity as intensity is increased at frequencies adjacent to characteristic frequency ( CF). DCN output is thus shaped by glycinergic inhibition, which can be readily assessed in recordings from fusiform cells. Previous DCN studies suggest an age-related loss of markers for glycinergic neurotransmission. The present study postulated that response properties of aged fusiform cells would show a loss of inhibition, resembling conditions observed with glycine receptor blockade. The functional impact of aging was examined by comparing response properties from units meeting fusiform-cell criteria in young and aged rats. Fusiform cells in aged animals displayed significantly higher maximum discharge rates to CF tones than those recorded from young-adult animals. Fusiform cells of aged rats displayed significantly fewer nonmonotonic CF rate-level functions and an age-related change in temporal response properties. These findings are consistent with an age-related loss of glycinergic input, likely from vertical cells, and with findings from other sensory aging studies suggesting a selective age-related decrement in inhibitory amino acid neurotransmitter function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据