4.5 Article

Synthesis, structure, and physical properties of hybrid nanocomposites for solid-state dye lasers

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 109, 期 46, 页码 21618-21626

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp058076a

关键词

-

向作者/读者索取更多资源

We report on the synthesis, structural characterization, physical properties, and lasing action of two organic dyes, Rhodamine 6G (Rh6G) and Pyrromethene 597 (PM597), incorporated into new hybrid organic-inorganic materials, where the organic component was either poly(2-hydroxyethyl-methacrylate) (PHEMA) or copolymers of HEMA with methyl methacrylate (MMA), and the inorganic counterpart consisted of silica derived from hydrolysis-condensation of methyltriethoxysilane (TRIEOS) in weight proportion of up to 30%. Lasing efficiencies of up 23% and high photostabilities, with no sign of degradation in the initial laser output after 100 000 pump pulses at 10 Hz, were demonstrated when pumping the samples transversely at 534 nm with 5.5 mJ/pulse. A direct relationship could be established between the structure of the hybrid materials, analyzed by solid-state NMR, and their laser behavior. An inorganic network dominated by di-/tri- substituted silicates in a proportion approximate to 35:65, corresponding to samples of HEMA with 15 and 20 wt % proportion of TRIEOS, optimizes the lasing photostability. The thermal properties of these materials, together with the high homogeneity revealed by atomic force microscopy (AFM) images, even in compounds with high silica content, indicate their microstructure to be a continuous phase, corresponding to the polymer matrix, which traps the silica components at molecular level via covalent bonding, with few or no silica islands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据