4.7 Article

Evaporation of a thin film: diffusion of the vapour and Marangoni instabilities

期刊

JOURNAL OF FLUID MECHANICS
卷 543, 期 -, 页码 183-202

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112005006348

关键词

-

向作者/读者索取更多资源

The stability of an evaporating thin liquid film on a solid substrate is investigated within lubrication theory. The heat flux due to evaporation induces thermal gradients; the generated Marangoni stresses are accounted for. Assuming the gas phase at rest, the dynamics of the vapour reduces to diffusion. The boundary condition at the interface couples transfer from the liquid to its vapour and diffusion flux. The evolution of the film is governed by a lubrication equation coupled with the Laplace problem associated with quasi-static diffusion. The linear stability of a flat film is studied in this general framework. The subsequent analysis is restricted to diffusion-limited evaporation for which the gas phase is saturated in vapour in the vicinity of the interface. The stability depends then only on two control parameters, the capillary and Marangoni numbers. The Marangoni effect is destabilizing whereas capillarity and evaporation are stabilizing processes. The results of the linear stability analysis are compared with the experiments of Poulard et al. (2003) performed in a different geometry. In order to study the resulting patterns, an amplitude equation is obtained through a systematic multiple-scale expansion. The evaporation rate is needed and is computed perturbatively by solving the Laplace problem for the diffusion of vapour. The bifurcation from the flat state is found to be a supercritical transition. Moreover, it appears that the non-local nature of the diffusion problem affects the amplitude equation unusually.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据