4.6 Article

Differential modulation of Ca2+/calmodulin-dependent protein kinase II activity by regulated interactions with N-methyl-D-aspartate receptor NR2B subunits and α-actinin

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 47, 页码 39316-39323

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M508189200

关键词

-

资金

  1. NIDDK NIH HHS [5T32-DK07563] Funding Source: Medline
  2. NIMH NIH HHS [R01 MH063232, R01 MH063232-05, MH63232, F32-MH068129] Funding Source: Medline
  3. NINDS NIH HHS [NS44082] Funding Source: Medline

向作者/读者索取更多资源

Neuronal Ca2+/calmodulin-dependent protein kinase II (CaMKII) interacts with several prominent dendritic spine proteins, which have been termed CaMKII-associated proteins. The NR2B subunit of N-methyl-D-aspartate (NMDA)-type glutamate receptor, densin-180, and alpha-actinin bind comparable, approximately stoichiometric amounts of Thr(286)-autophosphorylated CaMKII alpha, forming a ternary complex (Robison, A. J., Bass, M. A., Jiao, Y., Macmillan, L. B., Carmody, L. C., Bartlett, R. K., and Colbran, R. J. (2005) J. Biol. Chem. 280, 35329-35336), but their impacts on CaMKII function are poorly understood. Here we show that these interactions are differentially regulated and exert distinct effects on CaMKII activity. Nonphosphorylated and Thr(286)-autophosphorylated CaMKII bind to alpha-actinin with similar efficacy, but autophosphorylation at Thr(305/306) or Ca2+/calmodulin binding significantly reduce this binding. Moreover, alpha-actinin antagonizes CaMKII activation by Ca2+/calmodulin, as assessed by autophosphorylation and phosphorylation of a peptide substrate. CaMKII binding to densin (1247-1542) is partially independent of Thr(286) autophosphorylation and is unaffected by Ca2+-independent autophosphorylation or Ca2+/calmodulin. In addition, the CaMKII binding domain of densin-180 has little effect on CaMKII activity. In contrast, the interaction of CaMKII alpha with NR2B requires either Thr286 autophosphorylation or the binding of both Ca2+/calmodulin and adenine nucleotides. NR2B inhibits both the Ca2+/calmodulin-dependent and autonomous activities of CaMKII by a mechanism that is competitive with autocamtide-2 substrate, non-competitive with syntide-2 substrate, and uncompetitive with respect to ATP. In combination, these data suggest that dynamically regulated interactions with CaMKII-associated proteins could play pleiotropic roles in fine-tuning CaMKII signaling in defined subcellular compartments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据