4.7 Article

Electrostatics of the intracellular vestibule of K+ channels

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 354, 期 2, 页码 272-288

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2005.09.031

关键词

KcsA; MthK; KirBac1.1; KvAP; shaker

向作者/读者索取更多资源

Previous calculations using continuum electrostatic calculations showed that a fully hydrated monovalent cation is electrostatically stabilized at the center of the cavity of the KcsA potassium channel. Further analysis demonstrated that this cavity stabilization was controlled by a balance between the unfavorable reaction field due to the finite size of the cavity and the favorable electrostatic field arising from the pore helices. In the present study, continuum electrostatic calculations are used to investigate how the stability of an ion in the intracellular vestibular cavity common to known potassium channels is affected as the inner channel gate opens and the cavity becomes larger and contiguous with the intracellular solution. The X-ray structure of the calcium-activated potassium channel MthK, which was crystallized in the open state, is used to construct models of the KcsA channel in the open state. It is found that, as the channel opens, the barrier at the helix bundle crossing decreases to approximate to 0 kcal/mol, but that the ion in the cavity is also significantly destabilized. The results are compared and contrasted with additional calculations performed on the KvAP (voltage-activated) and KirBac1.1 (inward rectifier) channels, as well as models of the pore domain of Shaker in the open and closed state. In conclusion, electrostatic factors give rise to energetic constraints on ion permeation that have important functional consequences on the various K+ channels, and partly explain the presence or absence of charged residues near the inner vestibular entry. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据