4.8 Article

Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0508120102

关键词

H2O2; metacaspase; programmed cell death; proteasome activity; protein carbonyl

资金

  1. Intramural NIH HHS Funding Source: Medline

向作者/读者索取更多资源

In our previous study, we established that inhibition of apoptosis by the general caspase inhibitor is associated with an increase in the level of oxidized proteins in a multicellular eukaryotic system. To gain further insight into a potential link between oxidative stress and apoptosis, we carried out studies with Saccharomyces cerevisiae, which contains a gene (YCA1) that encodes synthesis of metacaspase, a homologue of the mammalian caspase, and is known to play a crucial role in the regulation of yeast apoptosis. We show that upon exposure to H2O2, the accumulation of protein carbonyls is much greater in a Delta yca1 strain lacking the YCA1 gene than in the wild type and that apoptosis was abrogated in the Delta yca1 strain, whereas wild type underwent apoptosis as measured by externalization of phosphatidylserine and the display of TUNEL-positive nuclei. We also show that H2O2-mediated stress leads to up-regulation of the 20S proteasome and suppression of ubiquitinylation activities. These findings suggest that deletion of the apoptotic-related caspase-like gene leads to a large H2O2-dependent accumulation of oxidized proteins and up-regulation of 20S proteasome activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据