4.5 Article

High-Q UHF micromechanical radial-contour mode disk resonators

期刊

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS
卷 14, 期 6, 页码 1298-1310

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2005.856675

关键词

electromechanical coupling; microelectromechanical systems (MEMS); microelectromechanical devices; microresonator; quality factor; resonator; UHF; VHF

向作者/读者索取更多资源

A micromechanical, laterally vibrating disk resonator, fabricated via a technology combining polysilicon surface-micromachining and metal electroplating to attain submicron lateral capacitive gaps, has been demonstrated at frequencies as high as 829 MHz and with Q's as high as 23 000 at 193 MHz. Furthermore, the resonators have been demonstrated operating in the first three radial contour modes, allowing a significant frequency increase without scaling the device, and a 193 MHz resonator has been shown operating at atmospheric pressure with a Q of 8,880, evidence that vacuum packaging is not necessary for many applications. These results represent an important step toward reaching the frequencies required by the RF front-ends in wireless transceivers. The geometric dimensions necessary to reach a given frequency are larger for this contour-mode than for the flexural-modes used by previous resonators. This, coupled with its unprecedented Q value, makes this disk resonator a choice candidate for use in the IF and RF stages of future miniaturized transceivers. Finally, a number of measurement techniques are demonstrated, including two electromechanical mixing techniques, and evaluated for their ability to measure the performance of sub-optimal (e.g., insufficiently small capacitive gap, limited dc-bias), high-frequency, high-Q micromechanical resonators under conditions where parasitic effects could otherwise mask motional output currents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据