4.6 Article

Generating annotated behavior models from end-user scenarios

期刊

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
卷 31, 期 12, 页码 1056-1073

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TSE.2005.138

关键词

scenario-based elicitation; synthesis of behavior models; scenario generation; invariant generation; labeled transition systems; message sequence charts; model validation; incremental learning; analysis tools

向作者/读者索取更多资源

Requirements-related scenarios capture typical examples of system behaviors through sequences of desired interactions between the software-to-be and its environment. Their concrete, narrative style of expression makes them very effective for eliciting software requirements and for validating behavior models. However, scenarios raise coverage problems as they only capture partial histories of interaction among system component instances. Moreover, they often leave the actual requirements implicit. Numerous efforts have therefore been made recently to synthesize requirements or behavior models inductively from scenarios. Two problems arise from those efforts. On the one hand, the scenarios must be complemented with additional input such as state assertions along episodes or flowcharts on such episodes. This makes such techniques difficult to use by the nonexpert end-users who provide the scenarios. On the other hand, the generated state machines may be hard to understand as their nodes generally convey no domain-specific properties. Their validation by analysts, complementary to model checking and animation by tools, may therefore be quite difficult. This paper describes tool-supported techniques that overcome those two problems. Our tool generates a labeled transition system (LTS) for each system component from simple forms of message sequence charts (MSC) taken as examples or counterexamples of desired behavior. No additional input is required. A global LTS for the entire system is synthesized first. This LTS covers all scenario examples and excludes all counterexamples. It is inductively generated through an interactive procedure that extends known learning techniques for grammar induction. The procedure is incremental on training examples. It interactively produces additional scenarios that the end-user has to classify as examples or counterexamples of desired behavior. The LTS synthesis procedure may thus also be used independently for requirements elicitation through scenario questions generated by the tool. The synthesized system LTS is then projected on local LTS for each system component. For model validation by analysts, the tool generates state invariants that decorate the nodes of the local LTS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据