4.1 Article

Enhanced tissue strength in cryopreserved, collagen-based blood vessel constructs

期刊

TRANSPLANTATION PROCEEDINGS
卷 37, 期 10, 页码 4625-4629

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.transproceed.2005.10.033

关键词

-

资金

  1. NHLBI NIH HHS [R43 HL66688-01] Funding Source: Medline

向作者/读者索取更多资源

Traditional cryopreservation methods do not adequately preserve complex natural or engineered multicellular tissues due to the ice formation in the extracellular matrices. Vitrification is an alternate ice-free method for cryopreservation. This study compares the effects of vitrification and conventional cryopreservation on an engineered blood vessel construct. Collagen-based vascular constructs were used as models in this study. Tubular constructs were cut into rings and distributed into fresh, frozen, and vitrified groups for evaluation of mechanical properties and cell viability. Passive mechanical tests revealed enhanced tissue strength after both freezing and vitrification. Cryosubstitution studies of frozen and vitrified constructs revealed negligible ice in the vitrified specimens and extensive ice formation in the extracellular matrix of frozen specimens. Morphological changes associated with ice formation were visible within tissues preserved using traditional cryopreservation but not in tissue preserved using vitrification. The metabolic assay results indicated that vitrified tissue had similar viability to fresh controls. These results suggest that the increased tissue strength after cryopreservation may relate to thermal property change during preservation that cross-link collagen in tissue-engineered blood vessels. Further development of this cryopreservation method is necessary to minimize the alteration in material property and maintain cell viability of the constructs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据