4.5 Review Book Chapter

Transmembrane Signaling Proteoglycans

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-cellbio-100109-104126

关键词

heparan sulfate; chondroitin sulfate; dermatan sulfate; glycosaminoglycan; cell adhesion; cytoskeleton; syndecan; metzincin

向作者/读者索取更多资源

Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据