4.6 Review

Mechanisms of amyloid fibril self-assembly and inhibition

期刊

FEBS JOURNAL
卷 272, 期 23, 页码 5971-5978

出版社

WILEY
DOI: 10.1111/j.1742-4658.2005.05022.x

关键词

amyloid formation; molecular recognition; protein folding; protein misfolding; protein-protein interactions; self-assembly; stacking interactions

向作者/读者索取更多资源

The formation of amyloid fibrils is associated with various human medical disorders of unrelated origin. Recent research indicates that self-assembled amyloid fibrils are also involved in physiological processes in several microorganisms. Yet, the molecular basis for the recognition and self-assembly processes mediating the formation of such structures from their soluble protein precursors is not fully understood. Short peptide models have provided novel insight into the mechanistic issues of amyloid formation, revealing that very short peptides (as short as a tetrapeptide) contain all the necessary molecular information for forming typical amyloid fibrils. A careful analysis of short peptides has not only facilitated the identification of molecular recognition modules that promote the interaction and self-assembly of fibrils but also revealed that aromatic interactions are important in many cases of amyloid formation. The realization of the role of aromatic moieties in fibril formation is currently being used to develop novel inhibitors that can serve as therapeutic agents to treat amyloid-associated disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据