4.6 Article

Nonperturbative dynamical many-body theory of a Bose-Einstein condensate

期刊

PHYSICAL REVIEW A
卷 72, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.063604

关键词

-

向作者/读者索取更多资源

A dynamical many-body theory is presented which systematically extends beyond mean-field and perturbative quantum-field theoretical procedures. It allows us to study the dynamics of strongly interacting quantum-degenerate atomic gases. The nonperturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory, and off-shell effects that are not captured by the Gross-Pitaevskii equation. This is relevant to account for the dynamics of, e.g., strongly interacting quantum gases atoms near a scattering resonance, or of one-dimensional Bose gases in the Tonks-Girardeau regime. We apply the theory to a homogeneous ultracold Bose gas in one spatial dimension. Considering the time evolution of an initial state far from equilibrium we show that it quickly evolves to a nonequilibrium quasistationary state and discuss the possibility to attribute an effective temperature to it. The approach to thermal equilibrium is found to be extremely slow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据