4.5 Review Book Chapter

Theoretical Perspectives on Protein Folding

期刊

ANNUAL REVIEW OF BIOPHYSICS, VOL 39
卷 39, 期 -, 页码 159-183

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-biophys-051309-103835

关键词

universality in protein folding; role of protein length; molecular transfer model; single molecule force spectroscopy

向作者/读者索取更多资源

Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions in the cellular context. Significant advances in theory and experiments have resulted in a conceptual framework for describing the folding mechanisms of globular proteins. The sizes of proteins in the denatured and folded states, cooperativity of the folding transition, dispersions in the melting temperatures at the residue level, and timescales of folding are, to a large extent, determined by N, the number of residues. The intricate details of folding as a function of denaturant concentration can be predicted by using a novel coarse-grained molecular transfer model. By watching one molecule fold at a time, using single-molecule methods, investigators have established the validity of the theoretically anticipated heterogeneity in the folding routes and the N-dependent timescales for the three stages in the approach to the native state. Despite the successes of theory, of which only a few examples are documented here, we conclude that much remains to be done to solve the protein folding problem in the broadest sense.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据