4.4 Article

Diffusion velocity for a three-dimensional vorticity field

期刊

出版社

SPRINGER
DOI: 10.1007/s00162-005-0004-8

关键词

viscous flows; vortex methods; incompressible flows

向作者/读者索取更多资源

A discussion is presented on the existence of a diffusion velocity for the vorticity vector that satisfies extensions of the Helmholtz vortex laws in a three-dimensional, incompressible, viscous fluid flow. A general form for the diffusion velocity is derived for a complex-lamellar vorticity field that satisfies the property that circulation is invariant about a region that is advected with the sum of the fluid velocity and the diffusion velocity. A consequence of this property is that vortex lines will be material lines with respect to this combined velocity field. The question of existence of diffusion velocity for a general three-dimensional vorticity field is shown to be equivalent to the question of existence of solutions of a certain Fredholm equation of the first kind. An example is given for which it is shown that a diffusion velocity satisfying this property does not, in general, exist. Properties of the simple expression for diffusion velocity for a complex-lamellar vorticity field are examined when applied to the more general case of an arbitrary three-dimensional flow. It is found that this form of diffusion velocity, while not satisfying the condition of circulation invariance, nevertheless has certain desirable properties for computation of viscous flows using Lagrangian vortex methods. The significance and structure of the noncomplex-lamellar part of the viscous diffusion term is examined for the special case of decaying homogeneous turbulence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据