4.5 Article

High levels of Cdc7 and Dbf4 proteins can arrest cell-cycle progression

期刊

EUROPEAN JOURNAL OF CELL BIOLOGY
卷 84, 期 12, 页码 927-938

出版社

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.ejcb.2005.09.016

关键词

Cdc7; Dbf4; replication; cell-cycle arrest; checkpoint; transfection; GFP; Cdc2/Cdk; Tyr-15 phosphorylation

向作者/读者索取更多资源

Cdc7-Dbf4 serine/threonine kinase is essential for initiation of DNA replication. It was previously found that overexpression of certain replication proteins such as Cdc6 and Cdt1 in fission yeast resulted in multiple rounds of DNA replication in the absence of mitosis. Since this phenomenon is dependent upon the presence of wild-type Cdc7/Hsk1, we hypothesized that high levels of Cdc7 and/or Dbf4 could also cause multiple rounds of DNA replication, or could facilitate entry into S phase. To test this hypothesis, we transiently overexpressed hamster Cdc7, Dbf4 or both in CHO cells. Direct observations of individual cells by fluorescence microscopy and flow cytometric analysis on cell populations suggest that overexpression of Cdc7 and/or Dbf4 does not result in multiple rounds of DNA replication or facilitating entry into S phase. In contrast, moderately increased levels of Dbf4, but not Cdc7, cause cell-cycle arrest in G2/M. This G2/M arrest coincides with hyperphosphorylation of Cdc2/Cdk1 at Tyr-15, raising the possibility that high levels of Dbf4 may activate a G2/M cell-cycle checkpoint. Further increase in Cdc7 and/or Dbf4 by 2-4 fold can arrest cells in G1 and significantly slow down S-phase progression for the cells already in S phase. (c) 2005 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据