4.6 Review Book Chapter

Protein translocation across the bacterial cytoplasmic membrane

期刊

ANNUAL REVIEW OF BIOCHEMISTRY
卷 77, 期 -, 页码 643-667

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev.biochem.77.061606.160747

关键词

chaperone; membrane protein; proton motive force; SecA; SecY; translocase

向作者/读者索取更多资源

About 25% to 30% of the bacterial proteins function in the cell envelope or outside of the cell. These proteins are synthesized in the cytosol, and the vast majority is recognized as a ribosome-bound nascent chain by the signal recognition particle (SRP) or by the secretion-dedicated chaperone SecB. Subsequently, they arc targeted to the See translocase in the cytoplasmic membrane, a multimeric membrane protein complex composed of a highly conserved protein-conducting channel, SecYEG, and a peripherally bound ribosome or ATP-dependent motor protein SecA. The See translocase mediates the translocation of proteins across the membrane and the insertion of membrane proteins into the cytoplasmic membrane. Translocation requires the energy sources of ATP and the proton motive force (PMF) while the membrane protein insertion is coupled to polypeptide chain elongation at the ribosome. This review summarizes the present knowledge of the mechanism and structure of the Sec translocase, with a special emphasis on unresolved questions and topics of current research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据