4.5 Review Book Chapter

Three-Dimensional Dust Radiative Transfer

期刊

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev-astro-082812-141042

关键词

scattering; Monte Carlo; ray tracing; computational astrophysics; numerical algorithms

向作者/读者索取更多资源

Cosmic dust is present in many astrophysical objects, and recent observations across the electromagnetic spectrum show that the dust distribution is often strongly three-dimensional (3D). Dust grains are effective in absorbing and scattering ultraviolet (UV)/optical radiation, and they re-emit the absorbed energy at infrared wavelengths. Understanding the intrinsic properties of these objects, including the dust itself, therefore requires 3D dust radiative transfer (RT) calculations. Unfortunately, the 3D dust RT problem is nonlocal and nonlinear, which makes it one of the hardest challenges in computational astrophysics. Nevertheless, significant progress has been made in the past decade, with an increasing number of codes capable of dealing with the complete 3D dust RT problem. We discuss the complexity of this problem, the two most successful solution techniques [ray-tracing (RayT) and Monte Carlo (MC)], and the state of the art in modeling observational data using 3D dust RT codes. We end with an outlook on the bright future of this field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据